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Introduction

Oxygenic photosynthesis is initiated by light-driven water 
oxidation and plastoquinone (PQ) reduction in the Pho-
tosystem II (PSII) reaction center. On the electron donor 
side of PSII, water is split and O2 is formed at a Mn4CaOx 
active site known as the oxygen-evolving complex (OEC). 
The protons stripped from water are channeled to the thy-
lakoid lumen. On the electron acceptor side of PSII, elec-
trons are transferred from the primary PQ acceptor, QA, to 
the secondary PQ acceptor, QB, via a non-heme iron (NHI). 
Protons from the thylakoid stroma are consumed upon QB 
reduction. The net reaction of PSII is summarized as

2H2O + 2PQ + 4H+
stroma+ ≥ 4hυ

→ O2+2PQH2+4H
+
lumen.

The PSII electron donor side operates using cofactors with 
very positive reduction potentials. Electrons are transferred 
from water (Em (O2/H2O) = + 0.88 V at pH 6) to the OEC 
(Em (Sn+1/Sn) = + 1.1 V) to tyrosine Z (Em (YZ

•/YZ) and 
finally to the hole (positive charge) in the ground state of 
the primary chlorophyll electron donor, P680 (Em (P680

+/
P680) = + 1.25 V) (reviewed in (Vinyard et al. 2013; Blan-
kenship 2021)) These values are remarkably positive in all 
of biochemistry and have led to PSII being the only enzyme 
capable of oxidizing water to O2.

Abbreviations
Em  Reduction potential
NHI  Non–heme iron
OEC  Oxygen–evolving complex
P680  Primary chlorophyll–a electron donor of Photosys-

tem II
PSII  Photosystem II
PQ  Plastoquinone
QA  Primary plastoquinone electron acceptor
QB  Secondary plastoquinone electron acceptor
Sn  Storage state of the OEC
YZ  Tyrosine Z
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Abstract
Photosystem II (PSII) uses light energy to oxidize water and to reduce plastoquinone in the photosynthetic electron trans-
port chain. O2 is produced as a byproduct. While most members of the PSII research community agree that O2 originates 
from water molecules, alternative hypotheses involving bicarbonate persist in the literature. In this perspective, we provide 
an overview of the important roles of bicarbonate in regulating PSII activity and assembly. Further, we emphasize that 
biochemistry, spectroscopy, and structural biology experiments have all failed to detect bicarbonate near the active site 
of O2 evolution. While thermodynamic arguments for oxygen-centered bicarbonate oxidation are valid, the claim that 
bicarbonate is a substrate for photosynthetic O2 evolution is challenged.
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Studies in the early 1940s showed that the isotopic 
composition of oxygen was nearly identical in water and 
photosynthetically produced O2, and concluded that water 
is the source of O2 in photosynthesis (Ruben et al. 1941; 
Vinogradow and Teis 1941). We acknowledge that these 
systems are complicated and could be affected by spontane-
ous or biologically-driven isotope mixing (for example, see 
discussions in (Metzner 1975). The source of O2 was later 
challenged when Otto Warburg and G. Krippahl observed 
the requirement of bicarbonate in the photosynthetic light 
reactions (Warburg and Krippahl 1958, 1960). Comprehen-
sive reviews about the role(s) of bicarbonate in PSII have 
been published (van Rensen and Klimov 2005; McConnell 
et al. 2012; Shevela et al. 2012; Swain et al. 2023).

Based on reasoning provided in this perspective, a con-
sensus has now been reached among PSII researchers that 
O2 originates solely from water (for reviews, see (Vinyard 
and Brudvig 2017; Lubitz et al. 2019; Shevela et al. 2023). 
However, alternative hypotheses usually involving bicar-
bonate that were once dominant (see discussion in (Warburg 
1964), have persisted (for example, (Stemler 1980; Castel-
franco et al. 2007), and are making a resurgence (see for 
example, (Wu 2021, 2023; Kelath Murali et al. 2022; Guo et 
al. 2024)). In general, these recent reports argue that bicar-
bonate is thermodynamically easier to oxidize than water, 
and that isotope tracking experiments have been misinter-
preted because PSII facilitates isotope mixing.

Here, we reason that bicarbonate is indeed very impor-
tant for PSII function but does not serve as a substrate for O2 
evolution. In addition, we reevaluate the thermodynamics 
of oxygen-centered bicarbonate oxidation relative to direct 
water oxidation.

Bicarbonate regulates PQ reduction

In PSII, bicarbonate acts on the electron acceptor side 
(Wydrzynski and Govindjee 1975) by ligating the NHI 
cofactor that resides between QA and QB (Xiong et al. 1996). 
This NHI is additionally ligated by four histidine residues 
from the D1 and D2 subunits of PSII (Fig. 1A) (Umena et 
al. 2011). In this configuration, the NHI promotes efficient 
electron transfer from QA

− to QB (reviewed in (Müh and 
Zouni 2013). The bicarbonate ligand can be removed com-
pletely or substituted by formate or acetate, which inhibits 
electron transfer to QB (see (Shevela et al. 2012). In some 
PSII assembly intermediates, the NHI is ligated by a carbox-
ylate from a D2 glutamate residue (Fig. 1B) (Zabret et al. 
2021; Gisriel et al. 2022a) that is presumably replaced with 
bicarbonate at a later stage. When bicarbonate is absent, O2 
acts as an electron acceptor (Ananyev et al. 2018) resulting 
in superoxide formation on the PSII electron acceptor side 
(Fantuzzi et al. 2022) and charge recombination between 
P680

+ and QA
− becomes more favorable (Brinkert et al. 

2016). These pathways are photoprotective because they 
minimize the formation of triplet chlorophyll as 3P680 which 
decays by reacting with O2 to form 1O2 (Vass and Cser 
2009). This reactive oxygen species damages biomolecules 
including those involved in photosynthesis (Triantaphylidès 
et al. 2008).

A simple yet elegant model is now available in which 
systems with adequate CO2/HCO3

− are likely to have the 
PSII NHI ligated by bicarbonate and have the capacity for 
productive photosynthesis (Brinkert et al. 2016; Tikhonov et 
al. 2018; Fantuzzi et al. 2022). In this model, the flux of PQ 
reduction by PSII is maximized and, in downstream steps in 
the Calvin-Benson Cycle, CO2 is fixed into carbohydrates. 
Systems without adequate CO2/HCO3

− could have the PSII 
NHI in an alternative ligation environment thus changing 
its reduction potential and drastically decreasing reactions 
leading to net photosynthesis. In the absence of bicarbonate, 
PQ reduction by PSII would be minimized and the excess 

Fig. 1 In mature PSII (A), the 
NHI (orange sphere) is ligated by 
a bicarbonate ion (Umena et al. 
2011). In a PSII assembly inter-
mediate (B), the NHI is ligated 
by a glutamate side chain (Zabret 
et al. 2021). Image generated in 
PyMOL from PDB IDs 3WU2 
and 7NHQ
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energy would be dissipated as heat through charge recom-
bination. We note that this model was established using in 
vitro experimental data and has yet to be confirmed in vivo.

Bicarbonate can facilitate proton release 
during water oxidation

Splitting water and producing O2 is accompanied by a release 
of protons. The OEC is connected to the thylakoid lumen 
via hydrogen-bond networks that can act as proton channels 
(Vogt et al. 2015). These networks are interconnected with 
each other (Kaur et al. 2021), but there are differences in 
these networks in different organisms (Gisriel et al. 2022b). 
Further, chloride ions are present in all high resolution PSII 
structures (see, for example, (Umena et al. 2011) and are 
used to tune the pKa values of the side chains of nearby 
components, as well as water molecules in these hydrogen-
bond networks to promote efficient proton transfer from the 
OEC to the thylakoid lumen (Pokhrel et al. 2011). Bicarbon-
ate has been demonstrated to act as a mobile proton carrier 
between the OEC and the lumen (Koroidov et al. 2014). 
This role of bicarbonate has been shown to enhance PSII 
activity under high light conditions (Koroidov et al. 2014), 
in hydrogen-bond network point mutants (Ananyev et al. 
2005; Banerjee et al. 2019), and in Arthrospira maxima, a 
cyanobacterium from a hyper-carbonate environment (Car-
rieri et al. 2007).

PSII is capable of oxidizing substrates other 
than water

Given the very positive reduction potentials of PSII elec-
tron donor side cofactors (+ 1.1–1.25 V, see above), it is 
reasonable that this enzyme can also oxidize other mole-
cules besides water. However, the OEC binding site is well 
protected from the outside environment by reaction center 
subunits and extrinsic subunits that protect and stabilize the 
OEC (reviewed in (Bricker et al. 2012).

Mn2+ is oxidized during OEC photo-assembly

The OEC is assembled in situ from free Mn2+, Ca2+, and 
water (reviewed in (Oliver et al. 2022). During this process, 
the electron donor side of PSII oxidizes Mn2+ ions to Mn3+ 
or Mn4+ ions. Simultaneously, water is deprotonated to 
form μ-(hydr)oxo ligands. In vitro, apo-OEC PSII has been 
observed to hyperaccumulate higher valent Mn ions when 
Ca2+ concentrations are low (Chen et al. 1995) or under 
high illumination intensities (Chernev et al. 2020). These 
results, as well as some others, have been used to propose an 

evolutionary mechanism in which an ancestral type II reac-
tion center used Mn2+ ions as its electron donor instead of 
water (Zubay 2000; Dismukes et al. 2001; Allen and Martin 
2007; Fischer et al. 2015; Chernev et al. 2020).

The early steps of OEC assembly have been known 
to be highly inefficient (Radmer and Cheniae 1971) and 
require multiple deprotonation events. Charles Dismukes 
and coworkers have shown that bicarbonate not only makes 
OEC assembly faster (Baranov et al. 2000), but also makes 
the process more efficient (Baranov et al. 2004). This effect 
is likely to involve two things. First, bicarbonate-ligated 
Mn2+ is thermodynamically easier to oxidize to Mn3+ than 
[Mn(H2O)6]2+ (Dismukes et al. 2001). Second, proton 
release controls the rate-determining step of OEC assem-
bly (Vinyard et al. 2019) and bicarbonate may serve as a 
mobile proton carrier to facilitate this step. In addition, 
chloride also enhances OEC assembly (Miyao and Inoue 
1991) using similar mechanisms as bicarbonate. First, chlo-
ride makes bound Mn2+ easier to be oxidized (Russell and 
Vinyard 2022). Second, chloride promotes efficient proton 
release (Vinyard et al. 2019). Further research is needed to 
disentangle bicarbonate vs. chloride effects during OEC 
assembly.

Small molecules can access the OEC and be oxidized

Several small molecules other than water can donate elec-
trons to the OEC. For example, hydroxylamine (Bouges 
1971; Cheniae and Martin 1972), hydrazine (Kok and 
Velthuys 1977), and hydrogen peroxide (Velthuys and Kok 
1978) can reduce Mn3+/4+ ions in the OEC. Access of these 
molecules to the OEC is increased when extrinsic subunits 
are depleted (Ghanotakis et al. 1984). Similar to an evolu-
tionary mechanism involving Mn2+ described above, hydro-
gen peroxide has also been proposed to have been a donor in 
a PSII ancestral reaction center (Blankenship and Hartman 
1998).

Recently, Gary Brudvig and coworkers showed that 
ammonia and iodide can be oxidized by the OEC in mutants 
with poor chloride binding (Shin et al. 2024). They propose 
that that in addition to chloride’s role in promoting proton 
release, it also enhances OEC substrate selectivity in favor 
of water. As an extension of this concept, we hypothesize 
that chloride also limits access of bicarbonate to the OEC. If 
this concept is experimentally validated, bicarbonate would 
be limited to hydrogen bond networks through which pro-
tons are shuttled to the lumen.
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The PSII electron donor side has not been 
shown to have any high affinity bicarbonate 
binding sites

Bicarbonate has long been postulated to function near the 
OEC (Stemler and Govindjee 1973). However, high-resolu-
tion structural studies using cryogenic electron microscopy 
(for example, (Kato et al. 2021; Gisriel et al. 2022b; Hussein 
et al. 2024), synchrotron X-ray sources (for example, (Gus-
kov et al. 2009; Umena et al. 2011), and X-ray free electron 
laser sources (for example, (Kupitz et al. 2014; Suga et al. 
2015, 2017; Young et al. 2016) have failed to detect bicar-
bonate bound near the OEC. Although an early 3.5 Å study 
suggested a bicarbonate near the OEC (Ferreira et al. 2004), 
it has not been observed in that location in later structures at 
higher resolutions. Further, a spectroscopic study has failed 
to detect any high affinity bicarbonate on the electron donor 
side (Aoyama et al. 2008). Efforts to quantify the number 
of bicarbonate ions bound per PSII reaction center have 
consistently produced values of nearly one (Govindjee et al. 
1991, 1997; Tikhonov et al. 2018) or less than one (Shevela 
et al. 2008; Ulas et al. 2008). These observed values are 
inconsistent with any additional bicarbonate binding sites 
besides that on the electron acceptor side of PSII. However, 
mobile bicarbonate ions may function to move protons on 
the electron donor side, as noted in this perspective.

O2 originates from water

Bicarbonate is a key cofactor of PSII. Its role on the PSII 
electron acceptor side is critical. Its supporting roles in 
facilitating proton release and OEC assembly help PSII 
optimize its function. If bicarbonate was bound near the 
OEC it would be easier to oxidize than water. However, 
bicarbonate simply has not been observed near the OEC 
using structural, spectroscopic, or biochemical approaches. 
Instead, the OEC is surrounded by water molecules which it 
is thermodynamically capable of oxidizing. O2 produced by 
PSII originates only from water.

Acknowledgements We thank Drs. James Moroney and Robert Blan-
kenship for helpful discussions.

Oxidizing hydrated CO2 is thermodynamically 
feasible

Suggestions that bicarbonate is a substrate for O2 pro-
duction are thermodynamically reasonable. In Fig. 2, an 
updated version of a thermodynamic analysis by (Dismukes 
et al. 2001) is presented. This analysis is performed using 
chemical standard conditions at equilibrium and caution is 
warranted in applying it to conditions in vivo.

On the left scheme in Fig. 2, CO2(aq) is first hydrated 
to H2CO3(aq), which then can dissociate to H+

(aq) and 
HCO3

−
(aq). These combined reactions have an effective pKa 

of approximately 6.1. Therefore, in the thylakoid lumen at 
pH 6, CO2(aq) and HCO3

−
(aq) are present in similar concen-

trations. H+
(aq) + HCO3

−
(aq) can be oxidized to form O2 with 

a standard free energy input of 209.0 kJ mol− 1. (Note that 
the carbon atom is already fully oxidized in bicarbonate and 
the oxidation is oxygen centered.) This energy gap can be 
broken into two steps by dissociating HCO3

−
(aq) to CO2(aq) 

and OH−
(aq) and then performing the oxidation reaction to 

form O2.

Oxidizing water directly is also thermodynamically 
feasible

On the right scheme in Fig. 2, water is directly oxidized to 
O2 with a standard free energy input of 245.3 kJ mol− 1. This 
energy gap can also be broken into two steps by first disso-
ciating water to H+

(aq) and OH−
(aq) and then performing the 

oxidation reaction to form O2.
The above analysis shows that oxidizing bicarbonate 

under chemical standard conditions (pH 0) requires only 
209.0 kJ mol− 1 of free energy input, while oxidizing water 
directly requires 245.3 kJ mol− 1 of free energy input. When 
scaled to pH 6 (typical of the lumen), oxidation of bicar-
bonate requires a 20% lower free energy input than direct 
oxidation of water (140.7 kJ mol− 1 vs. 176.8 kJ mol− 1, 
respectively). These values correspond to + 0.7 V for bicar-
bonate and + 0.9 V for water. Given that the reduction 
potential of the OEC (Sn+1/Sn) is + 1.1 V, the OEC is ther-
modynamically capable of oxidizing either species.

Fig. 2 Calculated ΔrG° values 
in kJ mol− 1 under chemical 
standard conditions (298.15 K, 
1 bar, 1 M concentration of each 
aqueous species). Data are com-
piled from National Bureau of 
Standards tables (Wagman 1982) 
with a correction for ΔfG° for the 
dissociation of H2CO3(aq) from 
(Alberty 1997). This scheme is 
based on an earlier analysis by 
(Dismukes et al. 2001)
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